~ Flexlab

NORAH TOKEN ECOSYSTEM

Consolidated Smart Contract Security Audit Report

December 11, 2025

Page 1 of 12

~ Flexlab

Table of Contents

L. EXECULIVE SUMIMIAIY ..uuuuiiiieeieeeietiee s e e e e ettt e e e e e e e e e et e e e e e e e e e eese it e s e eeaeeeeassaanaaaaeaeeeennnes 3
1.1 KeY FINGINGS SUMIMAIYuuuuiiiiiiiiiiiiiiieiie s sssnssnennnnnne 3
DA U (o 11 S Yoo 1= TR 4
A R o] o1 i = Tox X1 o 11 = o 4
KT O g1 1o | T o [o 1= P 5
[C-01] Broken Bridging Logic in BridgeAppliCatioN............coooeeieieieeeeeeeeeeeeeeeeeeeeeeeeeee e 5
[C-02] Transaction Mapping Collision in BridgeRESEIVEcooiieeviiiiiiiiiiiie e, 5
[C-03] Double-Claiming of Rewards in QuarterlyRevenueObligationccccccceeeneeennn. 5
[C-04] Broken Consensus Logic in Oraclelntegrationccccooeeviiiiiiiiiiiie e, 6
[C-05] Broken Daily Limit Logic in NorahToken (Solana) ..., 6
4. High SeVEIitY FINAINGS ...vuuiii it e e e e e e ettt e e e e e e e e e e aa e eeaes 7
[H-01] No Refunds on Cancellation or Failure (BridgeApplication)............ccccoeeeeeiieeeeeeeeenn. 7
[H-02] Unsafe ERC20 Transfer Handling (BridgeReSserve) ..., 7
[H-03] setChainReserve Resets State Dangerously (BridgeReserve)..........cccvvvvvvveeeennnn. 7
[H-04] Max Supply Circumvention (NorahToken EVM) ..., 7
[H-05] Missing Authority Initialization (SOlaNa).............ccceevuiiiiiiiie e, 7
[H-06] Bridge Reserve Allocation Not Enforced (S01ana)ccoovveevvveeeiiiiiiieeeeeeiiiiiee e, 7
[H-07] Missing Fund Transfers in FutureReceivablesAssignmentDeed..............ccccceeeee.. 7
[H-08] Centralized Oracle Data (CommodityBasedMinting)ooeeeeeeeeeieeiiiieeeeeeeeeeeeeeeenn 8
[H-09] Missing Cumulative Production Check (OutputRightsAgreement)............ccccceeene.... 8
[H-10] Single Point of Manipulation (Oraclelntegration) ..o, 8
[H-11] Decoupling of Token Ownership and Rights (TokenlssuanceAgreement)............... 8
[H-12] Logical Error in createBeneficiaryRight (SPVFiduciaryRole)cccoeeeeeeeeeiee. 8
Y[To 1100 IS Y=Y A T T[] o TR 9
5.1 Centralization and ACCESS CONLIOL..........oeuuiiiiiiii e e e e e e e 9
5.2 Denial Of SErVICe RISKS......cciiiiiiiiiii it e e e e e e e e e 9
5.3 LOQIC ANd StAtE ISSUESccoiiiiiiiiiii e et e et s e e e e e e et e e e e e e e e e aar b e e e e 9
6. Low Severity and Informational FINdiNGScooooiiiiiiiie e 10
(o2 R] o 10 A £= 11T = 1o o PO SSRPP 10
6.2 CO0E QUAIIY.....ciiiiiiiiii i 10
[SIRCT =oTe] aTe] g o1 Toar= T o D 1= 1] T | o 1N 10
7. Prioritized RECOMMENTALIONScoviiiiiiii i e e et e e e e e e eeaeraes 11
7.1 Immediate Actions (Pre-Deployment BIOCKEIS)..........uuuiiiiiiiiiieiiiiee e 11
7.2 High Priority (Before Mainnet)............oouuiiiiiiiiiiiee 11
ARG I\ =T 18T g I T | 11
T4 LOW PIIOFITY . ccoiiiiiieieeeeeeeeee e 11
S T O o] o o] 113 [o I PSS 12

Page 2 of 12

~ Flexlab

1. Executive Summary

This consolidated report presents the findings of a comprehensive security audit performed
on the Norah Token ecosystem smart contracts. The audit covered 15 contracts spanning
the EVM (Solidity) and Solana (Anchor/Rust) blockchain platforms.

The Norah Token ecosystem is designed to manage a Real-World Asset (RWA) backed
token with features including cross-chain bridging, quarterly revenue distributions,
commodity-based minting, and comprehensive legal agreement tracking on-chain.

1.1 Key Findings Summary

The audit identified multiple critical vulnerabilities that pose immediate risks to user funds
and system integrity. The most severe issues include broken bridging logic, double-claiming
of rewards, transaction mapping collisions, and ineffective rate limiting mechanisms.

Critical Open Fund Loss / System
Failure
High 12 Open Major Disruption
Medium 14 Open Conditional Risk
Low 14 Open Minor Issues
Informational 8 Open Best Practices

Page 3 of 12

~ Flexlab

2. Audit Scope

The following 15 smart contracts were included in this security audit:

2.1 Contracts Audited

NorahToken.sol EVM (Solidity)
NorahToken (Solana) Solana (Anchor)
BridgeApplication.sol EVM (Solidity)
BridgeReserve.sol EVM (Solidity)
QuarterlyRevenueObligation.sol EVM (Solidity)
Oraclelntegration.sol EVM (Solidity)
RobotMintManager.sol EVM (Solidity)
CommodityBasedMinting.sol EVM (Solidity)
TokenlssuanceAgreement.sol EVM (Solidity)
OutputRightsAgreement.sol EVM (Solidity)
NorahRWAIntegration.sol EVM (Solidity)
RevenueDistributionCovenant.sol EVM (Solidity)
SPVFiduciaryRole.sol EVM (Solidity)
FutureReceivablesAssignmentDeed.solEVM (Solidity)
USDTMock.sol EVM (Solidity)

Page 4 of 12

Medium Risk
Critical Risk
Critical Risk
Critical Risk
Critical Risk
Critical Risk
Medium Risk
Medium Risk
Medium Risk
Medium Risk
Medium Risk
Medium Risk
Medium Risk
Medium Risk

Low Risk (Test Only)

~ Flexlab

3. Critical Findings

The following critical vulnerabilities require immediate attention before any production
deployment. These issues pose significant risks to user funds and system integrity.

[C-01] Broken Bridging Logic in BridgeApplication
Contract: BridgeApplication.sol

Location: processBridge function

Description:

The processBridge function conflates incoming and outgoing bridge directionality. It validates
incoming bridge transactions against the local bridgeRequests mapping which stores
outgoing requests. This creates circular logic where bridging tokens effectively burns and re-
mints them on the same chain.

Impact: Incoming bridging is impossible unless users have pending outgoing requests with
matching nonces. Users pay fees to burn and immediately re-mint tokens, achieving no
actual bridging.

Recommendation: Separate logic for incoming and outgoing bridges. Create a new
executelncomingBridge function that does not check bridgeRequests.

[C-02] Transaction Mapping Collision in BridgeReserve

Contract: BridgeReserve.sol
Description:

The contract uses a global bridgeTransactions mapping keyed by nonce, but nonces are
generated per-user via userNonces[msg.sender]++. Multiple users will generate identical
nonces (e.g., User A nonce 0, User B nonce 0), causing data overwrites.

Impact: Previous bridge transactions are overwritten. User funds can be erased from
tracking, making finalization or refunds impossible.

Recommendation: Use keccak256(abi.encodePacked(msg.sender, nonce)) as the key, or
implement a global nonce counter, or use nested mappings.

[C-03] Double-Claiming of Rewards in QuarterlyRevenueObligation

Contract: QuarterlyRevenueObligation.sol
Description:

The claimDistribution function determines user share based on current token balance at
claim time rather than a historical snapshot. Users can claim rewards, transfer tokens to
another account, and claim again.

Impact: Complete fund drainage. Malicious users can repeatedly claim until the contract's
USDT balance is depleted, leaving honest late-claimers with nothing.

Recommendation: Implement historical balance snapshots using
ERC20Votes.getPastVotes or ERC20Snapshot. Record snapshot block in
calculateDistribution and use it in claimDistribution.

Page 5 of 12

~ Flexlab

[C-04] Broken Consensus Logic in Oraclelntegration

Contract: Oraclelntegration.sol
Description:

The contract stores only one price entry per symbol globally. The calculateConsensusPrice
function iterates over oracles but reads the same global value repeatedly, calculating an
average of identical numbers.

Impact: Consensus mechanism is non-functional. System returns the last submitted price,
enabling single-oracle manipulation.

Recommendation: Change storage to mapping(address => mapping(string => PriceData))
to store prices per oracle, then aggregate properly.

[C-05] Broken Daily Limit Logic in NorahToken (Solana)

Contract: norah_token (Solana/Anchor)
Description:

The daily limit check uses raw Unix timestamp (seconds) instead of day index. Since
timestamps update every second, authority.last_mint_date != current_time is true for almost
every transaction, resetting the daily limit per block instead of per day.

Impact: A compromised robot authority can mint up to daily_limit per block rather than per
day, rapidly draining the supply.

Recommendation: Calculate day index: let current_day = Clock::get()?.unix_timestamp /
86400;

Page 6 of 12

~ Flexlab
4. High Severity Findings

[H-01] No Refunds on Cancellation or Failure (BridgeApplication)

When requestBridge is called, tokens are burned. If the bridge is cancelled or failed, only the
status updates - no tokens are refunded. Users permanently lose funds.

Recommendation: Implement refund mechanism via RobotMintManager or NorahToken to
restore user balances.

[H-02] Unsafe ERC20 Transfer Handling (BridgeReserve)

SafeERC20 is imported but not properly applied. Direct transfer/transferFrom calls without
return value checking could fail silently with non-standard tokens.

Recommendation: Use IERC20(address(norahToken)).safeTransferFrom() explicitly.

[H-03] setChainReserve Resets State Dangerously (BridgeReserve)

Calling setChainReserve for an existing chain resets availableReserve and pendingBridges
to initial values, corrupting accounting of in-transit funds.

Recommendation: Separate initialization and update logic, preserving runtime values
during updates.

[H-04] Max Supply Circumvention (NorahToken EVM)

receiveTokens (bridging) and _claimRewards (staking) call _mint directly without checking
maxSupply, allowing supply to exceed intended cap.

Recommendation: Override _mint to enforce: require(totalSupply() + amount <=
maxSupply)

[H-05] Missing Authority Initialization (Solana)
No instructions exist to initialize RobotAuthority or BridgeAuthority accounts. The contract is
non-functional for minting operations.

Recommendation: Add administrative instructions to initialize and manage authority
accounts.

[H-06] Bridge Reserve Allocation Not Enforced (Solana)

bridge reserve_amount (30%) is calculated but never checked. robot_mint can consume
100% of supply, leaving nothing for bridging.

Recommendation: Enforce: current_supply + amount <= max_supply -
bridge_reserve_amount for robot mints.

[H-07] Missing Fund Transfers in
FutureReceivablesAssignmentDeed

executeDistribution records distributions without transferring any tokens.
IERC20/SafeERC20 are imported but unused.

Recommendation: Implement actual token transfers or remove misleading imports and
document off-chain settlement.

Page 7 of 12

~ Flexlab

[H-08] Centralized Oracle Data (CommodityBasedMinting)
Chainlink oracle is initialized but never used. Owner manually sets pricelyield values,
enabling arbitrary minting manipulation.

Recommendation: Implement actual Chainlink integration or document centralized model
clearly.

[H-09] Missing Cumulative Production Check
(OutputRightsAgreement)

monetizeOutput/tokenizeOutput only check current transaction quantity against total, not
cumulative. Operators can exceed rights indefinitely.

Recommendation: require(rights.totalOutputProduced + outputQuantity <=
rights.outputQuantity)

[H-10] Single Point of Manipulation (Oraclelntegration)

Due to shared storage, the last oracle to submit controls the entire system's price, bypassing
redundancy safeguards.

Recommendation: Implement per-oracle storage and proper consensus aggregation.

[H-11] Decoupling of Token Ownership and Rights
(TokenlssuanceAgreement)

Rights are not linked to actual token holdings. Users can sell tokens but keep rights, or
issuers can create phantom rights.

Recommendation: Verify token balance during issuance and implement transfer hooks.

[H-12] Logical Errorin createBeneficiaryRight (SPVFiduciaryRole)

beneficiary field is hardcoded to msg.sender (owner), making it impaossible to assign rights to
actual beneficiaries.

Recommendation: Add _beneficiary parameter to the function.

Page 8 of 12

~ Flexlab

5. Medium Severity Findings

5.1 Centralization and Access Control

[M-01] Centralized Validation - BridgeApplication accepts but ignores merkleProof,
relying solely on authorizedValidators

[M-02] Centralized Revenue Stream Creation - FutureReceivablesAssignmentDeed
only allows owner to create streams

5.2 Denial of Service Risks

[M-03] DoS in Data Updates - CommodityBasedMinting reverts data updates during
mintingCooldown

[M-04] Unbounded Loops - NorahRWAIntegration getSystemStatistics loops over all
cycles

[M-05] DoS via Array Growth - Oraclelntegration removeQOracle and getActiveOracles
iterate unbounded arrays

[M-06] Unbounded Loops - RevenueDistributionCovenant
checkCovenantCompliance iterates three dynamic arrays

[M-07] Unbounded Governance Calculation - TokenlssuanceAgreement
updateGovernanceRights loops indefinitely

5.3 Logic and State Issues

[M-08] Inefficient Token Burning - BridgeApplication uses two-step transfer then burn
[M-09] Non-Functional Flash Loan Protection - NorahToken checks block.timestamp
> 0 (always true)

[M-10] Deprecated selfdestruct - NorahToken ToronetOwnable.destroy uses
deprecated opcode

[M-11] Invalid Interface Assumption - NorahRWAIntegration checkContractHealth
assumes all contracts are ERC20

[M-12] Race Condition - QuarterlyRevenueObligation processRevenue can be called
after calculateDistribution

[M-13] PDA Seed Caollision - Solana NorahToken MintRequest limited to 1 per
second

[M-14] Strict Deadline Locks State - SPVFiduciaryRole prevents fulfillment after
deadline with no resolution

Page 9 of 12

~ Flexlab

6. Low Severity and Informational Findings

6.1 Input Validation

» Missing zero address checks in constructors (BridgeApplication,
CommodityBasedMinting, SPVFiduciaryRole)

* Inconsistent input validation in NorahRWAIntegration updateSystemConfiguration

» Lack of validation for distribution amounts in FutureReceivablesAssignmentDeed

6.2 Code Quality

* Floating pragma ("0.8.17) - recommend locking version for production
» abi.encodePacked collision risk - recommend using abi.encode

* Unused imports (IERC20, SafeERC20) in multiple contracts

* Missing events for configuration updates

* Unused Chainlink Aggregator Interface in CommodityBasedMinting

6.3 Economic and Design

» Bridge fee defined but never collected (BridgeReserve)

Unused fee parameters in OutputRightsAgreement

No upper bound on minting amounts in CommodityBasedMinting

Precision loss in staking rewards calculation

Reputation gamification allows gaming without accuracy (Oraclelntegration)
Hardcoded Chainlink feeds and revenue share percentages

Page 10 of 12

~ Flexlab

7. Prioritized Recommendations

7.1 Immediate Actions (Pre-Deployment Blockers)

Fix BridgeApplication incoming/outgoing logic separation

Fix BridgeReserve transaction mapping collision

Implement historical snapshots in QuarterlyRevenueObligation
Refactor Oraclelntegration storage and consensus logic

Fix Solana daily limit calculation (divide by 86400)

Add authority initialization instructions to Solana program

7.2 High Priority (Before Mainnet)

Implement refund mechanisms in BridgeApplication

Apply SafeERC20 consistently across all contracts

Enforce maxSupply globally in NorahToken _mint override
Implement cumulative production tracking in OutputRightsAgreement
Fix beneficiary assignment in SPVFiduciaryRole

Link token ownership to rights in TokenlssuanceAgreement

7.3 Medium Priority

Replace unbounded loops with counters or pagination

Implement proper flash loan protection or remove misleading code
Remove deprecated selfdestruct functionality

Implement actual Chainlink integration or document centralization
Add merkle proof verification or remove unused parameter

7.4 Low Priority

Lock pragma versions for production

Add comprehensive zero-address validation
Remove unused imports and code

Add events for all configuration changes
Use multi-sig wallets for all admin functions

Page 11 of 12

~ Flexlab

8. Conclusion

|[PUBLIC RELEASE VERSION]

